Carrot or Stick?

Tradability of Mobile Source Emissions in California

ARB Workshop November 9, 2004 Thomas E. Gieskes

California Refining - Mobile vs. Stationary Emissions

\simeq

Stillwater Associates LLC

TΝ

2003 Estimates ton/year*	TOG	ROG	CO	NOX	SOX	PM	PM ₁₀	PM2.5
Refining & Marketing Stationary Emissions	384.39	106.93	8.42	7.99	61.76	3.83	2.38	1.87
Gasoline based On-Road Mobile Source Emissions	914.20	843.15	8549.24	900.41	4.16	32.71	32.05	19.35

- With the exception of SOX, mobile source emissions from on-road gasoline use are far greater than the emissions from the facilities where the gasoline is produced, blended and stored
- In California, the majority of gasoline is consumed within relatively short distances from the producing centers (Bay Area, Los Angeles Basin)
- ➤ Historically, emission reductions from stationary sources have primarily been achieved through incentives: tradable emission reduction credits
- > Emission reductions from mobile sources have primarily been achieved through mandated restrictions of fuel specifications and automotive technology improvements

^{*} Source: California Air Resources Board, 2003 Emissions Inventory Almanac

Stationary Emission Reductions: Diminishing Returns

Stillwater Associates LLC

TM

CA TOG Emissions 1975 - 2003

■ Refinery Stationary ■ Gasoline Mobile

- ➤ Further reductions in stationary emissions from refineries seem difficult
- Example: SCAQMD Rule 1178
 - Requires LA Basin refiners and large petroleum terminal operators to reduce VOC emissions from storage tanks
 - Reductions achieved by doming of open roof floating storage tanks and engineering improvements of vents
 - Total expected reductions in the order of 1 to 1.5 ton/day
 - Five year implementation schedule in order to maintain operability of critical infrastructure
 - Total estimated cost after offsetting credits in the order of \$100 to \$150 million, or \$100 million per ton/day

Source: California Air Resources Board, Emissions Inventory Almanac

Possibilities for Voluntary Mobile Source Reductions

Stillwater Associates LLC

TM

- Refiners will currently blend at the very limit of Predictable Model
- Most refiners can frequently achieve better specifications but
 - Only at higher cost, for which there is no compensation
 - At odds with Unocal patent
- With financial incentives
 - Refiners would optimize emission credits versus operating cost
 - Alternative technologies such as clean fuel additives would have a market

Potential for Mobile Source Reductions

\simeq

Stillwater Associates LLC

•••

➤ The Predictive Model provides the tool to calculate the effect of voluntary improvements over Reference, for instance for TOG

 2 °F lower T50 	% lower TOG	ton/year
 3 °F lower T90 	% lower TOG	ton/year
1% less olefins	% lower TOG	ton/year
0.1% lower benzene	% lower TOG	ton/year
 2% less aromatics 	% lower TOG	ton/year
		ton/year

- Value of these emission credits is in the order of \$ MM/year
- Cost to the refiners is likely to be in the order of \$ MM/year
- Cost to the refiner can be substantially reduced with emerging combustion enhancing additives under alternative formulations

